
ANNs – Neuroevolution  



Overview 
ML Technique generating increasingly better topologies, weights & hyperparameters  
by means of evolutionary algorithms (Hyper Parameter: Parameter whose value is 
used to control the learning process)  

 

Mutation & Crossing over/removing genetic code 
• Mutate topology & weights 

• Combine features of high performers 

• Eliminate low performers to find better solutions 

(Pauls, 2020) 

 

Each encoding in turn is decoded into the fitting phenotype, then employed and 

evaluated 
(Summit & Webb, 2011) 

 

Population based optimisation 
• Individual stored as genome, not neural network → mapped to NN 

 

1. Init set of genomes & apply to problem environment 
2. Assign fitness score based on how well solved problem → Optimisation loop 
3. Pop continuously mutated, recombined & evaluated → Natural Selection 
4. Eventually yield NN that solves problem well, might have been impossible to come up with 

by hand 

(Pauls, 2020) 

 

Generational Neuroevolution 
• Whole population being in one step at a time 

(Pauls, 2020) 

 

Competitive Coevolution 
• Asynchronous, performed on a per-genome basis 

(Pauls, 2020) 

 

Genetic Encoding 
Faculty that maps genome to the according NN  

Also responsible for granularity of search space by limiting complexity of genome encoding 

 



Efficiently mutate & recombine 
Efficient representation of ANN necessary 

• “Allows frequently employed genetic code to not have to analyse highly complex data 

structures but for them to analyse compact genetic codes that can be processed fast” 

o ∴ can generate sensible mutations or check if 2 genomes are eligible for 

recombination 

o ∴ Neuroevolution algorithms operate on genetic encoding exclusively instead of 

complex data structures 

(Pauls, 2020) 

 

Representation 
Genetic representation → Genotype 

Mapped NN → Phenotype 

 

Direct encoding 
Encode connection & weight into genotype, exclude possibility of bias 

• Enormous search space with fine granularity 

(Pauls, 2020) 

e.g. 

Gene #1 In: 1 Out: 3 Weight: 0.2 

Gene #2 In: 1 Out: 4 Weight: 0.7 

Gene #3 In: 2 Out: 4 Weight: 0.3 

Gene #4 In: 3 Out: 5 Weight: 0.3 

Gene #5 In: 4 Out: 5 Weight: 0.8 

 

 

Indirect encodings 
Custom encoding not intuitively translatable into a NN 

• Requires separate translation faculty in order to map a genotype to a NN 

(Pauls, 2020) 

e.g. 

Gene #1 000001001 

Gene #2 001100001 

Gene #3 000100100 

Gene #4 000000011 
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Both Encoding demonstrate how well the genetic encode determines the size of the search 

space. 
(Pauls, 2020) 

Mutation, Recombining and Reproduction 
 

Reproduction 
Traversal of Search Space 

Create new genomes through mutating or recombining genomes fit to be parents 

(Pauls, 2020) 

 

Mutations 
Explore viability of ANN architecture, weight distribution and hyperparameters 

Define 3 aspects: 

1. What part of genetic encoding 

a. Topology, weights, hyperparameters, random selection of bits 

2. To what extent 

a. Large changes if it’s doing bad, small changes if its doing good 

3. Somehow directional or random 

a. If it can map a lack of performance in the problem environment 

(Pauls, 2020) 

 

Recombining 
Merge 2 promising genomes & distinct features 

(Pauls, 2020) 

 

Evaluation 
Map genome to NN, apply it to the environment, calculate fitness score  

Only one thing can be modified for evaluation → The way the fitness scores are calculated → 

Calculated on a case-to-case basis 

(Pauls, 2020) 

 

Evolving 
Optimise weights to a fixed neural network architecture 

Evolve a section of the population → Evolve solution components instead of full solutions 

Fitness expresses how well each neuron cooperates with others to forma  full network 



Topology can have a large effect on function 

• Evolving appropriate topologies can achieve good performance faster than evolving weights 

alone 

(Summit & Webb, 2011) 

 

Natural and Parental selection 
Choice of genomes for parents and for genomes to be removed  

It’s heavily dependent on the algorithm used 

Fractional number for parents and those removed → Parent fraction ≠ removed fraction 

(Pauls, 2020) 

 

Competitive Coevolution selection is difficult due to asynchronosity 
(Pauls, 2020) 

 

Therefore, each individual genome must be evaluated, not the NN in itself so that the genomes can 

be removed, mutated or combined. 

 

Application 
Self-driving cars 

- Trained virtually in UE5 or something similar before deployed 

(Sainath, Vignesh, Siddarth & Suganya , 2021) 
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